OTE 4

Point Source - Point Receiver Land Seismic Acquisition: an Update on Modern Technologies and Survey Design

Instructor  Dr Anatoliy Cherepovskiy (Independent consultant, Moscow, Russia)
Duration  1 day
Disciplines  Geophysics
Level  Foundation
Language  English or Russian
Book  Available in EAGE Bookshop (in Russian)
CPD Points
 5

A new version of this course if offered in 1 or 2 days as a EAGE short course

Course description

This course will provide information related to recent advances in land seismic data acquisition technology, equipment and the methodologies that are being utilized to improve seismic imaging quality and productivity of 3D acquisition with an emphasize on the high-end surveys as performed in open areas. The course will not cover the fundamentals of 3D and multicomponent seismic survey design, although there will be a section that will give a review of recent survey design approaches and principles.

 

Course objectives

The purpose of this course is to:

  • Provide an overview of trends in 3D land seismic and achievements
  • Understand trade-offs in modern seismic acquisition
  • Understand the ways to improve seismic imaging and data conditioning for better reservoir characterization

 

Course outline

1.Short introduction
The trends in 3D land seismic and evolution in survey design, field equipment, and acquisition techniques.

2. Arrays versus point receivers
Intra-array statics (synthetic and field-data examples), non-vertical ray emergence, and other factors degrading high-frequency content of acquired data and distorting amplitudes and AVO effects. Is there a compromise between high-frequency preservation and S/N ratio improvement? Digital array forming.

3. 3C sensors versus conventional P-wave vertical geophones
Advantages of 3C single sensors from operational and geophysical points of view. Multicomponent seismic with MEMS accelerometers: expectations and practical achievements. Ray-tracing and finite-difference modelling studies.

4. High-density and wide-azimuth 3D surveys
Breakthrough in seismic imaging with HD and WAZ data. More receivers or more sources? New types of attributes extracted from HD and WAZ data to better characterize complex and fractured reservoirs.

5. Diversity stack in noisy areas
Multiple-fleet and high-productivity vibroseis techniques
New paradigm in seismic exploration: better sampling of noise and signal.

6. Cableless recording systems versus cable-based ones
New technologies enabling a new generation of recording systems without cables and radio: the importance of GPS in the evolution of land seismic acquisition techniques. Where cableless systems are applicable. Full cableless and infill modes.

7. Conclusions

  • Not all acquisition techniques are equal (status in Russia vs. Middle East)
  • What will be high-end land 3D surveys in the future: point 3C acquisition? A mix of cable and cableless, very dense and very noisy data?

 

Prerequisites

The course assumes familiarity with basic seismic acquisition techniques and equipment. No mathematical background is required, since physical concepts are graphically illustrated. A comprehensive list of references is given in the book.

 

Participants' profile

The course is appropriate not only for geophysicists involved in land survey design, acquisition, and modelling, but also for those involved in data processing and interpretation who wish to better understand the potential improvements that can be made.

 

About the instructor

Anatoly V CherepovskiyAnatoliy Cherepovskiy received an MSc in Geophysics from Moscow State University in 1980. He joined OZGEO overseas geological exploration company (Moscow) and carried out seismic data processing including almost two years at the field data processing centre in Yemen. In 1991 he obtained a PhD at VNIIGeofizika Research Institute (Moscow) with a dissertation titled "Improving efficiency of vibroseis investigations in frontier areas".

In 1995 he joined Petrosystems division of CGG (Moscow) as a project manager. From 1998 to 2004 he worked for Green Mountain Geophysics (GMG), later I/O GMG, where he was involved in 3D survey design, refraction statics determination, and benchmark data processing. He presented courses on seismic survey design and refraction statics to numerous companies in Russia and the CIS. In 2004 he joined I/O full-wave team and was involved in 3D/3C model-based survey design, ray-trace and finite-difference modelling. From 2008 he serves as regional geophysicist for Sercel, Moscow office, and provides consultancy on multicomponent equipment and survey design, high-density single-sensor seismic, and high-productivity vibroseis techniques.

Anatoly is a member of EAGE, SEG, and EAGS (EurAsian Geophysical Society). He is the author of English-Russian and Russian-English Dictionary of Exploration Geophysics, EAGE, 2008.

 

Interested in this course?

Check our Calendar of Events to learn when this Tour will visit your region. If you wish to attend but it is not scheduled near you, you can request the course as In-House Training.

 

Go to Calendar