Geophysics - Surface Imaging

Beyond Conventional Seismic Imaging



  Prof. Evgeny Landa (Tel Aviv University, Israel)


  1 day


  Geophysics – Surface Imaging




  English, Russian

Course book

  The OTE 1 book is available in the EAGE Bookshop


  5 CPD points




This course is also offered as OTE 1


Course description

Wavefield Data Analysis

Time images usually provide sufficient information for a variety of subsurface models of moderate complexity and facilitate the estimation of the model for depth migration. Improving the quality of time sections remains the focus of intensive research. In particular, a lot of efforts are directed towards improving the accuracy of moveout correction. The proposed course discusses time imaging procedures such as Multifocusing and Common Reflection Surface when each image trace is constructed by stacking traces which need not belong to the same CMP gather. In this case a new and more general moveout correction is requested. These new methods open a way for reliable wavefield analysis and wavefront parameters estimation. The latest represents a basis for different applications including signal enhancement, velocity model building, statics correction, AVO analysis.

Seismic Diffraction

Currently applied seismic processing and imaging are almost exclusively based on seismic reflection. The latest is the response to continuity in the subsurface. At the same time accurate and reliable imaging of small scale geological elements and discontinuities of the subsurface such as faults, unconformity, fractures etc. are a key to improve seismic resolution. In unconventional reservoirs the main objective is detection of fracture corridors. Small scale objects give rise to a diffraction response. Use of seismic diffraction is a rapidly emerging technology which has tremendous potential to reduce exploration and production risks and increase oil and gas recovery.
The course integrates elements of the theory of wave propagation, diffraction modeling and imaging, and interpretation. The main objectives are: understanding the role of small and medium scale subsurface objects and elements in forming the total seismic wavefield and using diffraction for imaging.

Imaging without precise knowledge of the subsurface velocity model

In the proposed course I introduce a way to look at model-independent seismic imaging using the quantum mechanics concept. Can Feynman’s path-integral idea be used for seismic imaging? We can construct the seismic image by summation over the contributions of elementary signals propagated along a representative sample of possible paths between the source and receiver points. When the velocity model is estimated with uncertainties, a single stationary path does not produce a correctly focused subsurface image. In contrary, quantum imaging uses all possible trajectories accounts for multiple stationary paths and takes into account model uncertainties.

Pitfalls and challenges of seismic inversion

Proposed solutions are usually based on the criterion of the best fit between calculated and observed data. But it is well understood that by itself, a good fit does not guarantee that an inverted model is correct. Seismic inversion may lead to construction of several subsurface models with significantly different geological meaning, all of which fit the observed data equally well. The ill-posedness of seismic inverse problems is fundamental and does not depend on a particular type of algorithm or on the approach underlying the algorithms. In this course, I formulate a number of fundamental questions which should be addressed to make the inverse problems a mature science rather than a set of recipes.


Course Objectives

Upon completion of the course, participants will be able to:

1. Understand the role of time and depth imaging withing the general exploration work-flow.
2. Understand the differences between several prestack data analysis approaches, in particular CMP, CRS andincrease MF.
3. Appreciate importance and potential of seismic diffraction for increase resolution and reliability of seismic imaging.
4. Understand the uncertain nature of seismic velocity model and acquaintance to a way of taking the uncertainties into account.
5. Understand and admit fundamental problems of seismic inversion including FWI.


Course outline


• From statistics to determinism
• Overcoming uncertainties

I. Non CMP-based methods for data analysis and imaging

• Time versus depth imaging
• Why CMP method works?
• Non-hyperbolic moveout
• Why CMP method fails?
• Non-CMP based moveout: principles
• Wavefront parameter estimation: Multifocusing and Common Reflection Stack
• Applications: signal enhancement, statics correction, multiple attenuation, stack, migration

II. Seismic Diffraction

• Reflections versus difraction
• History
• Modeling
• Diffraction imaging
• Wavefield separation
• Case studies

III. Imaging without precise velocity model: Quantum seismic imaging

• Feynman “path-summation” picture of the world
• Path-summation seismic imaging

IV. Pitfalls and challenges of seismic inversion

• Inversion – thinking backward
• Non-uniqueness of geophysical inversion
• FWI: the present status

V. Living with uncertainties



Basic knowledge of seismic data acquisition and processing. static correction, CMP stacking for zero-offset approximation, normal moveout (NMO) correction, velocity analysis, semblance coherency measure, dip moveout. Basic knowledge in ray theory.


Participants' profile

Participants should have a basic knowledge of seismic data acquisition and processing, static correction, CMP stacking for zero-offset approximation, normal moveout (NMO) correction, velocity analysis, semblance coherency measure, ray theory.


Recommended reading

Participants are recommended to read the following articles before attending the course:
* Peter Hubral, 2001. The hidden roots of human discovery and creativity. First break, Volume 19.11 November 2001
* Richard Feynman, 1985. Surely You're Joking, Mr. Feynman!: Adventures of a Curious Character, Edward Hutchings (editor), W. W. Norton


About the instructor

Evgeny LandaEvgeny Landa obtained his MSc degree in geophysics at Novosibirsk University (1972) and PhD degree in geophysics at Tel Aviv University (1986). He started his carrier in the former Soviet Union, Novosibirsk as a researcher, and senior geophysicist at the Siberian Geophysical Expedition. After immigrating to Israel, he worked at the Geophysical Institute of Israel as a researcher, Head of the R&D group and Head of the Seismic Department (1981—2002). During 2002-2014 he worked as Director of OPERA (Applied Geophysical Research Group) in Pau (France) where he was involved in different aspects of seismic data processing, velocity model building and time and depth imaging. His work on velocity model building by coherency inversion has had a strong impact on today’s seismic depth imaging workflows and forms an important part of the GeoDepth (Paradigm) software package. Recently he is a professor of Tell Aviv University. His research interest involves using non-reflecting energy for increasing seismic resolution and imaging without precise velocity information. He has published more than 60 papers in international journals and his book ‘Beyond Conventional Seismic Imaging’. He is a member of EAGE and SEG, from which he received the Awards of Best Paper (SEG, Honorary Mentioned, 2005) and the EAGE Eotvos Award (2007 and 2009)

                    Learning Geoscience Logo


Explore other courses under this discipline:


Full Waveform Inversion in an Anisotropic World. Where Are the Parameters Hiding?

Instructor: Prof. Tariq Alkhalifah (KAUST)

The course starts by introducing the fundamentals of full-waveform inversion (FWI) starting from its basic definition. It focuses on the model update issues and provides analysis of its probable success in converging to a plausible model. In the course we will discuss the many challenges we face in applying FWI on seismic data and introduce modern day proposed solutions to these challenges. The focus of the course will be on FWI applied to anisotropic media. As a result, the course will also introduce anisotropy, its optimal parametrization and wavefield simulation in such media. Practical multi-parameter inversion for anisotropic parameters requires an optimal FWI setup. We will discuss such a setup, which includes the proper parametrization of the medium and data access scheme necessary for a potential convergence to a plausible anisotropic model.

More information

Principles and Applications of Seismic Interferometry and Ambient Noise Seismology in Hydrocarbon Exploration

Instructor: Dr Gerard Schuster (KAUST)

This one-day course is designed for a broad range of seismic researchers, data processors, and interpreters working in the petroleum industry. The course teaches the principles of seismic interferometry, ambient noise seismology and their applications to surface seismic, VSP, and OBS data. The ultimate objectives are to enable geophysicists to evaluate the potential of seismic interferometry in uniquely solving their problems.

More information

Seismic Diffraction – Modelling, Imaging and Applications

Instructors: Prof. Evgeny Landa (Tel Aviv University) and Dr Tijmen Jan Moser (Moser Geophysical Services)

Diffractions have been identified as the key seismic manifestation of fractures and other small-scale reservoir heterogeneities. This two-day course will present the current state-of-the-art of diffraction technology and put this in context by a review of its past developments. The course will cover both forward diffraction modeling and diffraction imaging. Case studies of diffraction imaging will be presented covering applications in seismic exploration and other areas of geoscientific interest.

More information

3D Tomography by Active and Passive Seismic Data

Instructor: Prof. Dr Aldo Vesnaver (The Petroleum Institute)

Building a 3D Earth model in depth is needed not only for accurate seismic imaging, but also for linking well data (as logs and cores) and reservoir simulations. Tomography can build a 3D macro-model for P and S velocities that integrates surface and well data, as well as active and passive seismic. This short course will introduce the basic concepts of traveltime inversion keeping all the math at a very basic level.

More information

Applied Depth Imaging

Instructor: Dr Ruben Martinez (Reservoir Geoscience)

This course has two main segments. In the first segment, the participant will understand the basic concepts behind the tools commonly employed in velocity model building and depth migration.
In the second segment, the participant will learn how to use these tools for building velocity models and generate seismic images in depth using practical work flows for a variety of complex geologic scenarios. At the end of the course, an overview of the emerging depth imaging technologies is presented.

More information

Beyond Conventional Seismic Imaging

Instructor: Prof. Evgeny Landa (Tel Aviv University)

While depth imaging play an increasing role in seismic exploration, data analysis and imaging in time domain play an important role. Moreover, for complex models that request the use of prestack depth migration, time imaging usually constitutes a key first step. The proposed course discusses: a) data analysis and imaging based on new procedures such as Multifocusing and Common Reflection Surface; b) diffraction Imaging based on diffracted energy targeting to image small scale subsurface objects; c) imaging without precise knowledge of the subsurface velocity model (path summation); d) pitfalls and challenges of seismic inversion.

More information

Image Log Interpretation

Instructor: Prof. Peter Lloyd (Honorary Professor)

The course has been designed for geoscientists, engineers and other technical staff who want to analyze and integrate image and dip data with other logs and seismic to enhance their understanding of exploration plays and field development. It leans heavily on worked class examples and case studies. Instead of interpreting image and dip data in isolation, the course shows how they can be used in conjunction with cores, other logs, modern depositional analogues, outcrop studies and hi-resolution seismic data to refine reservoir models.

More information

Seismic Depth Imaging and Anisotropic Velocity Model Building

Instructor: Mr Etienne Robein (ERT)

The course will present in simple terms (cartoons rather than equations!) the principle of different techniques in each class of methods (Kirchhoff, Beam Migrations, WEM, RTM), while pointing out their respective merits and limitations. Similarities and differences between Time- and Depth-Imaging will be briefly reminded. In parallel, special emphasis is put on methods used to build the necessary anisotropic velocity models. Both Ray-based techniques (linear and non-linear tomography) and wavefield extrapolation-based ones, including Full Waveform Inversion, are addressed.

More information

Full-Waveform Inversion for High-Resolution Reservoir Characterization

Instructor: Prof. Dr Dries Gisolf (Delft Inversion)

This two-day course will start with an introduction and a short recap on complex integral transforms (Fourier, Laplace, F/K and linear Radon). Followed by topics on: - The acoustic wave equation in inhomogenous media - Integral representations of the acoustic wave equation; Kirchhoff-Rayleigh and the Scattering Integral (Lippmann-Schwinger) - The AVO data model; Zoeppritz reflection coefficients - Linear inversion of AVO data including regularisation; synthetic and real data examples - The non-linear data model for inversion; data equation and object equation; iterative, multiplicatively regularised inversion - Applications based on an elastic full-wavefield non-linear data model; realistic synthetic reservoir study, real data case studies including low-frequency model extraction and seismic-to-well matching. Synthetic time-lapse example.

More information

Migration, Velocity Model Building and Updating

Instructor: Mr Piet Gerritsma (Gerritsma Geophysical Training and Consultancy)

The process of migration, whereby a proper image in time or depth of the subsurface is obtained, is directly related with the velocity model that both serves as input for the migration process as well as is the result of such a migration. Therefore migration and velocity model building are intimately related processes and often applied in an iterative mode. This course gives an overwiew with theory and implementation of the representative migration algorithms as well as of the multitude of ways to build and update subsurface velocity models.

More information

The Principles of Quantitative Acoustical Imaging

Instructor: Prof. Dr Dries Gisolf (Delft Inversion)

This course presents a systematic approach to imaging of acoustic reflection data and the extraction of media property information from the image amplitudes, based on wave theory. Although the approach is valid for a wide range of acoustical frequencies and applications, there is a bias towards seismic imaging.

More information