Seismic Sequence Stratigraphy

 

Instructor

  Mr Klaus Fischer (Wintershall, Hannover, Germany)

Duration

  2 to 4 days

Disciplines

  Geophysics - Integrated Geophysics

Level

  Intermediate

Language

  English, German

EurGeol

  10 to 20 CPD points

Keywords

 
 3D   DEPOSITIONAL SYSTEM   FACIES   INTERPRETATION   LITHOLOGY   RECONSTRUCTION   REFLECTION   SEDIMENT   SEISMIC STRATIGRAPHY 

 

Course description

Seismic data offer more than structural information only; they can help define the chronostratigraphic framework of a sedimentary basin fill and provide valuable information on facies distributions within depositional sequences identified. Based on this it allows making reservoir predictions both in exploration and production working domains. The integrated approach permits detailed reconstruction of the basin fill history in exploration domain and helps delineating flow units within a reservoir sequence in field development. The range in observation scale makes the tool useful for basin analysis and reservoir modeling. The technique is essential for modern seismic reservoir characterization studies adopting a multi-disciplinary approach.

Based on seismic examples and some ˆhands on" interpretation exercises from different geological settings, attendees learn how to identify different depositional environments from seismic data, predict facies and gross lithological units (reservoir and seal pairs), estimate paleo water depths and evaluate subsidence trends and base level changes.

 

Course objectives

The course objective is to discuss sequence stratigraphic principles and demonstrate their relevance to seismic interpretation. The basic workflow will be presented for seismic stratigraphic interpretation and basin evolution analysis, using case histories and field examples worldwide.

 

Course outline

  • Introduction
  • Principles of sequence stratigraphy, sequence stratigraphic models
  • Principles of seismic stratigraphy, recognition of seismic sequence boundaries and other surfaces of importance, delineation of systems tracts, sea-level variations
  • Seismic facies analysis: reflection geometries and other seismic facies characteristics with a detailed description of geological facies models and their use for lithology / depositional environment prediction
  • 3D visualisation and attribute analysis
  • Illustration of standard workflows for seismic reservoir characterisation

 

Participants' profile

Geologists/geophysicists involved in seismic interpretation for basin analysis / exploration / production and also for reservoir engineers who need more in-depth knowledge on the seismic expression of flow units and depositional environments.

 

Prerequisites

Participants should have a basic understanding of geology and depositional systems, as well as of the reflection seismic method.

 

About the instructor

Klaus C FischerKlaus C. Fischer has spent more than 30 years in the industry. Currently he is Principal Geologist and heading the seismic interpretation team within the internal G&G services department with Wintershall Holding GmbH in Kassel, Germany. Since 1999 he carried out evaluations in the North and South Caspian Basin, Western Siberia, North Africa, Middle East, Brazil, Argentina, Romania, Norway, and Northern Germany.

Before he worked with Prakla-Seismos in the German and Austrian Molasse Basin, Northern Germany, Turkey, Middle East, North Africa. Later on he worked for Schlumberger GeoQuest in Germany, Middle East, North Africa, Romania, Caspian Region, and Mexico with a special focus on seismic stratigraphy.

Klaus is a lecturer on Seismic Stratigraphy at the Montan University of Leoben, Austria, and at Tuebingen University. He is a member of EAGE, AAPG, and SEG.

 

                    Learning Geoscience Logo

 

Explore other courses under this discipline:

 

New Tools and Approaches in Reservoir Quality Prediction

Instructor: Dr Dave L. Cantrell (Cantrell GeoLogic and Stanford University, USA)

Reservoir quality prediction has long been the ultimate goal of industry geologists, yet few have achieved this in a truly quantitative fashion. This workshop presents a new approach to reservoir quality prediction that involves the integration of a variety of modeling techniques to understand, quantify and predict the geological processes that control reservoir quality. Since initial reservoir quality is established at the time of deposition, numerical process models are used to predict initial reservoir quality; diagenetic process models are then used to modify these initial results and ultimately produce a quantitative and geologically-based prediction of present-day subsurface reservoir quality.

More information

Non-Linear Geostatistics for Reservoir Modelling

Instructors: Prof. Dr Stephen Tyson and Dr Ing Sebastian Hörning (Universiti Teknologi Brunei and The University of Queensland)

The course will show the attendees how to test for linear spatial dependence and introduce the concepts of non-linear geostatistics. Attendees will develop an excel spreadsheet and a python notebook which can be used for spatial data analysis and non-linear stochastic simulation. Existing geostatistics algorithms based on the kriging matrix can be shown to underestimate the connectivity of extreme values because they assume a linear spatial dependence model. Moreover, the estimation of uncertainty based on these techniques uses the kriging variance, which is not dependent on the values of the spatially distributed variable. It can also be shown that these uncertainty estimate are often implausible. This course will explain the reasons why most spatial variables in geoscience do not have a linear spatial dependence, even after monotonic transformations, and what the impact of this in the estimation of petrophysical properties. The course will show the attendees how to test for linear spatial dependence and introduce the concepts of non-linear geostatistics. Attendees will develop an Excel spreadsheet and a python notebook which can be used for spatial data analysis and non-linear stochastic simulation.

More information

Basin and Petroleum Systems Modelling: Applications for Petroleum Exploration Risk and Resource Assessments

Instructor: Dr Bjorn Wygrala (Schlumberger)

The term “Petroleum Systems” and the technology “Basin and Petroleum Systems Modelling” will be introduced by showing applications in areas with critical exploration challenges, including salt basins and thrustbelts. Technical breakthroughs in the last 10-15 years have been the extension of the technology from 2D to 3D, and the ability to perform multi-phase petroleum migration modelling using different methods in high resolution geological models. This enables temperature, pressure and petroleum property predictions to be made with higher levels of accuracy and in the most complex geological environments such as in the sub-salt or in thrustbelts. Case studies will be used with live software presentations to illustrate key points. Applications of the technology will range from frontier exploration in which large areas with only sparse data are screened, to detailed assessments of exploration risks in structurally complex areas, to petroleum resource assessments of yet-to-find oil and gas.

More information

Well Logs and Borehole Image

Instructor: Prof. Dr Michael Poppelreiter (University Technology Petronas)

The most universal, comprehensive and concise descriptive documents on oil and gas wells are well logs. They impact the work of almost every oil field group from geologists to roustabouts to bankers. Familiarity with the applications of well logs is therefore essential for people forging their careers in the oil business. The instructor uses a core-based approach to help participants develop a good grounding in understanding and applying well logging techniques. General principles of physics are presented to explain the functioning of modern logging tools. Wherever possible, the physics of logging measurements is related to everyday tools and applications. Cross-plotting and reconnaissance techniques quickly and efficiently discriminate between water, oil and gas. Error minimization techniques, applicable only to computerized log analysis, produce optimal results. Participants benefit from realistic experience by working in teams on a comprehensive log interpretation exercise.

More information

Best Practice in Pore Fluid Pressure and Fracture Pressure Prediction

Instructor: Prof. Dr Richard Swarbrick (Swarbrick GeoPressure Consultancy)

All wells drilled require a pre-drill prediction of pore fluid and fracture pressures which defines the drilling window. This course explains the objectives, methods and uncertainties of prediction, based on extensive global experience. The necessary understanding of the geological/geophysical context of abnormal pressures leading to standard algorithms will be provided. Part of the challenge is terminology and contrasting display methods of geoscience and operations/drilling groups. Both approaches are necessary and investigated in the interactive exercises which will form an essential component of the course.

More information

Image Log Interpretation

Instructor: Prof. Peter Lloyd (Honorary Professor)

The course has been designed for geoscientists, engineers and other technical staff who want to analyze and integrate image and dip data with other logs and seismic to enhance their understanding of exploration plays and field development. It leans heavily on worked class examples and case studies. Instead of interpreting image and dip data in isolation, the course shows how they can be used in conjunction with cores, other logs, modern depositional analogues, outcrop studies and hi-resolution seismic data to refine reservoir models.

More information

Natural Fracture Systems and Fractured Hydrocarbon Accumulations, Mechanics and Management

Instructor: Dr Dirk Nieuwland (NewTec International)

Unconventional hydrocarbon systems require unconventional approaches to decide on drilling locations and development techniques. The information contained in natural fracture systems can be used to support the drilling and well stimulation technique for the development of unconventional hydrocarbon systems such as shale gas. This short course is based on geomechanics as a technique that can be used to understand and to develop unconventional hydrocarbon systems such as shale gas systems, and fractured crystalline basement, where conventional logging and seismic systems are inadequate.

More information

3D Reservoir Modelling of Naturally Fractured Reservoirs

Instructor: Dr Tim Wynn (AGR-Petroleum Services)

Reservoir modelling for field development planning is a well-accepted process but its application to fractured reservoirs requires specific considerations which are less commonly known. This course describes a practical methodology for building 3D static (“geocellular”) reservoir models for naturally fractured reservoirs using standard modelling software, covering such considerations. The issues addressed include the integration of log, core and seismic data, the sourcing and application of in situ stress data, the process of defining and building the static reservoir model itself, and the creation of output in a form appropriate for dynamic modelling using dual porosity reservoir simulators where appropriate. More complex workflows using discrete fracture networks will also be summarised, as will general issues of fracture description, uncertainty-handling and volumetrics.

More information

Deepwater Reservoirs: Exploration and Production Concepts

Instructor: Prof. Dorrik Stow (Heriot-Watt University)

Sandstones deposited in deep marine environments form important hydrocarbon reservoirs in many basins around the world. Interbedded mudstones can be important as source rocks, as well as acting as barriers, baffles and seals. Deepwater reservoirs are currently the principal target for oil and gas exploration, with over 1600 existing turbidite fields and plays.

More information

--