Seismic Sequence Stratigraphy



  Mr Klaus Fischer (Wintershall, Hannover, Germany)


  2 to 4 days


  Geophysics - Integrated Geophysics




  English, German


  10 to 20 CPD points




Course description

Seismic data offer more than structural information only; they can help define the chronostratigraphic framework of a sedimentary basin fill and provide valuable information on facies distributions within depositional sequences identified. Based on this it allows making reservoir predictions both in exploration and production working domains. The integrated approach permits detailed reconstruction of the basin fill history in exploration domain and helps delineating flow units within a reservoir sequence in field development. The range in observation scale makes the tool useful for basin analysis and reservoir modeling. The technique is essential for modern seismic reservoir characterization studies adopting a multi-disciplinary approach.

Based on seismic examples and some ˆhands on" interpretation exercises from different geological settings, attendees learn how to identify different depositional environments from seismic data, predict facies and gross lithological units (reservoir and seal pairs), estimate paleo water depths and evaluate subsidence trends and base level changes.


Course objectives

The course objective is to discuss sequence stratigraphic principles and demonstrate their relevance to seismic interpretation. The basic workflow will be presented for seismic stratigraphic interpretation and basin evolution analysis, using case histories and field examples worldwide.


Course outline

  • Introduction
  • Principles of sequence stratigraphy, sequence stratigraphic models
  • Principles of seismic stratigraphy, recognition of seismic sequence boundaries and other surfaces of importance, delineation of systems tracts, sea-level variations
  • Seismic facies analysis: reflection geometries and other seismic facies characteristics with a detailed description of geological facies models and their use for lithology / depositional environment prediction
  • 3D visualisation and attribute analysis
  • Illustration of standard workflows for seismic reservoir characterisation


Participants' profile

Geologists/geophysicists involved in seismic interpretation for basin analysis / exploration / production and also for reservoir engineers who need more in-depth knowledge on the seismic expression of flow units and depositional environments.



Participants should have a basic understanding of geology and depositional systems, as well as of the reflection seismic method.


About the instructor

Klaus C FischerKlaus C. Fischer has spent more than 30 years in the industry. Currently he is Principal Geologist and heading the seismic interpretation team within the internal G&G services department with Wintershall Holding GmbH in Kassel, Germany. Since 1999 he carried out evaluations in the North and South Caspian Basin, Western Siberia, North Africa, Middle East, Brazil, Argentina, Romania, Norway, and Northern Germany.

Before he worked with Prakla-Seismos in the German and Austrian Molasse Basin, Northern Germany, Turkey, Middle East, North Africa. Later on he worked for Schlumberger GeoQuest in Germany, Middle East, North Africa, Romania, Caspian Region, and Mexico with a special focus on seismic stratigraphy.

Klaus is a lecturer on Seismic Stratigraphy at the Montan University of Leoben, Austria, and at Tuebingen University. He is a member of EAGE, AAPG, and SEG.


                    Learning Geoscience Logo


Explore other courses under this discipline:


New Tools and Approaches in Reservoir Quality Prediction

Instructor: Dr Dave L. Cantrell (Cantrell GeoLogic and Stanford University, USA)

Reservoir quality prediction has long been the ultimate goal of industry geologists, yet few have achieved this in a truly quantitative fashion. This workshop presents a new approach to reservoir quality prediction that involves the integration of a variety of modeling techniques to understand, quantify and predict the geological processes that control reservoir quality. Since initial reservoir quality is established at the time of deposition, numerical process models are used to predict initial reservoir quality; diagenetic process models are then used to modify these initial results and ultimately produce a quantitative and geologically-based prediction of present-day subsurface reservoir quality.

More information

Non-Linear Geostatistics for Reservoir Modelling

Instructors: Prof. Dr Stephen Tyson and Dr Ing Sebastian Hörning (Universiti Teknologi Brunei and The University of Queensland)

The course will show the attendees how to test for linear spatial dependence and introduce the concepts of non-linear geostatistics. Attendees will develop an excel spreadsheet and a python notebook which can be used for spatial data analysis and non-linear stochastic simulation. Existing geostatistics algorithms based on the kriging matrix can be shown to underestimate the connectivity of extreme values because they assume a linear spatial dependence model. Moreover, the estimation of uncertainty based on these techniques uses the kriging variance, which is not dependent on the values of the spatially distributed variable. It can also be shown that these uncertainty estimate are often implausible. This course will explain the reasons why most spatial variables in geoscience do not have a linear spatial dependence, even after monotonic transformations, and what the impact of this in the estimation of petrophysical properties. The course will show the attendees how to test for linear spatial dependence and introduce the concepts of non-linear geostatistics. Attendees will develop an Excel spreadsheet and a python notebook which can be used for spatial data analysis and non-linear stochastic simulation.

More information

Well Test Analysis

Instructor: Prof. Shiyi Zheng (London South Bank University)

This course on well test analysis will provide attendees basic knowledge on the subject. The course will start with a review of an oil field life from exploration, appraisal, development and abandonment to define the role of well testing. The history and clear definition of the subject will also be given as the summary of this introduction. The course will cover classic, modern and numerical well testing concepts and techniques.

More information

Basin and Petroleum Systems Modelling: Applications for Petroleum Exploration Risk and Resource Assessments

Instructor: Dr Bjorn Wygrala (Schlumberger)

The term “Petroleum Systems” and the technology “Basin and Petroleum Systems Modelling” will be introduced by showing applications in areas with critical exploration challenges, including salt basins and thrustbelts. Technical breakthroughs in the last 10-15 years have been the extension of the technology from 2D to 3D, and the ability to perform multi-phase petroleum migration modelling using different methods in high resolution geological models. This enables temperature, pressure and petroleum property predictions to be made with higher levels of accuracy and in the most complex geological environments such as in the sub-salt or in thrustbelts. Case studies will be used with live software presentations to illustrate key points. Applications of the technology will range from frontier exploration in which large areas with only sparse data are screened, to detailed assessments of exploration risks in structurally complex areas, to petroleum resource assessments of yet-to-find oil and gas.

More information

Best Practice in Pore Fluid Pressure and Fracture Pressure Prediction

Instructor: Prof. Dr Richard Swarbrick (Swarbrick GeoPressure Consultancy)

All wells drilled require a pre-drill prediction of pore fluid and fracture pressures which defines the drilling window. This course explains the objectives, methods and uncertainties of prediction, based on extensive global experience. The necessary understanding of the geological/geophysical context of abnormal pressures leading to standard algorithms will be provided. Part of the challenge is terminology and contrasting display methods of geoscience and operations/drilling groups. Both approaches are necessary and investigated in the interactive exercises which will form an essential component of the course.

More information

Natural Fracture Systems and Fractured Hydrocarbon Accumulations, Mechanics and Management

Instructor: Dr Dirk Nieuwland (NewTec International)

Unconventional hydrocarbon systems require unconventional approaches to decide on drilling locations and development techniques. The information contained in natural fracture systems can be used to support the drilling and well stimulation technique for the development of unconventional hydrocarbon systems such as shale gas. This short course is based on geomechanics as a technique that can be used to understand and to develop unconventional hydrocarbon systems such as shale gas systems, and fractured crystalline basement, where conventional logging and seismic systems are inadequate.

More information

3D Reservoir Modelling of Naturally Fractured Reservoirs

Instructor: Dr Tim Wynn (AGR-Petroleum Services)

Reservoir modelling for field development planning is a well-accepted process but its application to fractured reservoirs requires specific considerations which are less commonly known. This course describes a practical methodology for building 3D static (“geocellular”) reservoir models for naturally fractured reservoirs using standard modelling software, covering such considerations. The issues addressed include the integration of log, core and seismic data, the sourcing and application of in situ stress data, the process of defining and building the static reservoir model itself, and the creation of output in a form appropriate for dynamic modelling using dual porosity reservoir simulators where appropriate. More complex workflows using discrete fracture networks will also be summarised, as will general issues of fracture description, uncertainty-handling and volumetrics.

More information

Deepwater Reservoirs: Exploration and Production Concepts

Instructor: Prof. Dorrik Stow (Heriot-Watt University)

Sandstones deposited in deep marine environments form important hydrocarbon reservoirs in many basins around the world. Interbedded mudstones can be important as source rocks, as well as acting as barriers, baffles and seals. Deepwater reservoirs are currently the principal target for oil and gas exploration, with over 1600 existing turbidite fields and plays.

More information

Challenges and Solutions in Stochastic Reservoir Modelling - Geostatistics, Machine Learning, Uncertainty Prediction

Instructor: Dr Vasily Demyanov (Heriot-Watt University)

Reservoir prediction modelling is subject to many uncertainties associated with the knowledge about the reservoir and the way they are incorporated into the model. Modern reservoir modelling workflows, which are commonly based on geostatistical algorithms, aim to support development decisions by providing adequate reservoir description and predict its performance. Uncertainty about reservoir description needs to be accounted for in modelling workflows to quantify the spread of reservoir predictions and its impact development decisions. The course aims to build awareness of the impact the modelling choices on the reservoir predictions and their relation to the way uncertainty is incorporated into reservoir modelling workflows. The course addresses the problem of tying the workflow with the expected geological vision of a reservoir subject to uncertainty. This is associated with one of the common issues, when standard assumptions of a workflow are not consistent with the model geology or do not reflect possible variations due to existing uncertainty. The course demonstrates the implementation of geostatistical concepts and algorithms in geomodelling workflows and the ways uncertainty is accounted for in reservoir description and predictions. The course includes an overview of the state-of-the art conventional techniques and some novel approaches, in particular machine learning for reservoir description.

More information